
Simple and Efficient Secret Sharing Schemes for
Sharing Data and Image

Binu V P#, Sreekumar A*

#Department of Computer Applications
Cochin University Of Science and Technology,Kerala, India

* Department of Computer Applications
 Cochin University Of Science and Technology,Kerala, India

Abstract—Secret sharing is a new alternative for outsourcing
data in a secure way. It avoids the need for time consuming
encryption decryption process and also the complexity
involved in key management. The data must also be protected
from untrusted cloud service providers. Secret sharing based
solution provides secure information dispersal by making
shares of the original data and distributes them among
different servers. Data from the threshold number of servers
can be used to reconstruct the original data. It. is often
impractical to distribute data among large number of servers.
We have to achieve a trade off between security and efficiency.
An optimal choice is to use a (2, 3) or (2, 4) threshold secret
sharing scheme, where the data are distributed as shares
among three or four servers and shares from any two can be
used to construct the original data. This provides security,
reliability and efficiency. We propose some efficient and easy
to implement secret sharing schemes in this regard based on
number theory and bitwise XOR. These schemes are also
suitable for secure sharing of images. Secret image sharing
based on Shamir’s schemes are lossy and involves complicated
Lagrange interpolation. So the proposed scheme can also be
effectively utilized for lossless sharing of secret images.

Keywords— Shamir’s Secret Sharing, Secure Data Storage,
Secret Image Sharing Introduction

I. INTRODUCTION

 The secret sharing schemes are originally proposed by
Shamir [1] and Blackley [2] in 1979. The motivation was to
safeguard cryptographic keys. Their solution was to store
the secret keys at several locations as shares and when
authorized number of users collaborates together, they can
retrieve the secret. The schemes are (t, n) threshold schemes
where any t number of users can collaborate to recover the
secret out of n users. This provides security, reliability and
convenience. Shamir’s scheme is simple and easy to
implement and is based on polynomial interpolation.
Blackley’s scheme has a different approach and is based on
hyper plane geometry. But it is difficult to implement.
Secret sharing schemes have found numerous applications
in designing several cryptographic protocols. Threshold
cryptography [3], access control [4], secure multi-party
computation [5] [6] [7], attribute based encryption [8] [9],
generalized oblivious transfer [10] [11], visual
cryptography[12] etc..., are some of the important areas
where secret sharing schemes are used. In this paper we

suggest efficient secret sharing schemes for the reliable and
secure distributed storage of data on untrusted servers.
 Shamir’s scheme is based on polynomial interpolation
over a finite field. It uses the fact that we can construct a
polynomial of degree t-1 only if t data points are given. The
scheme is based on polynomial interpolation. Given t points
in the 2-dimensional plane (xi, yi)… (xt, yt), with distinct
xi’s, there is one and only one polynomial P(x) of degree t-1
such that P(xi) = yi for all i. In order to share the secret S,
pick a random t-1 degree polynomial ܲሺݔሻ 	ൌ 	ܽ	଴ ൅ ܽଵݔ	 ൅
… ൅	ܽ௧ିଵݔ௧ିଵ with a0 = S, and evaluate shares as S1=
P(1),S2= P(2),…, Si = P(i), … ,Sn= P(n).Any subset of t of
these shares Si together with their identifying indices i, we
can find the coefficients of P(x) by interpolation, and then
evaluate S=P(0).The knowledge of just t-1 of these values,
does not suffice in order to calculate S. Efficient O(nlog2n)
algorithms exist for the evaluation and interpolation of
polynomials.
 A secret sharing scheme is called perfect if less than t
shares give no information about the secret. It is known that
for a perfect secret sharing scheme H(Si) >=H(S). If H(Si)
=H(S) then the secret sharing scheme is called ideal.
Shamir’s scheme is perfect and ideal.Blackley’s scheme is
not perfect.
 Confidentiality, reliability and efficiency are the major
concerns in secure storage of data. The idea of secret
sharing for the information dispersal is suggested by
Krawczyk et al [13] in 1994.He proposed a computationally
secure secret sharing scheme for the distributed storage
using Rabin’s [14]
Information Dispersal Algorithm (IDA) and Shamir’s secret
sharing scheme. However the data is encrypted using a
symmetric key encryption and the share of the key is
distributed along with the data shares. The share size is less
than the secret in this case compromising the information
theoretic security. Abhishek Parak et al [15] in 2010
proposed a space efficient secret sharing scheme for the
implicit data security. They incorporated k-1 secrets in n
shares and any k shares can be used to reconstruct the
original secret. A recursive construction using Shamir’s
scheme is applied in which computational over head is
more. Recursive methods of secret sharing is also
mentioned in [16], [17].Computational secret sharing
schemes are proposed for the space efficiency in
[18],[19],[20].

Binu V P et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 404-409

www.ijcsit.com 404

 Secret sharing based solution provides information
theoretical security on confidentiality without encryption
and hence avoids the complexities associated with
encryption and key management. It also provides the
guarantee on availability of data. Perfect secret sharing
needs large amount of computational overhead. We propose
specially designed secret sharing schemes using XOR and
number theoretic technique to reduce the computation
overhead. Unanimous consent schemes are easy to
implement using XOR.But the implementation of a general
(t, n) threshold scheme is difficult. Wang et al [21]
proposed a scheme based on Boolean operation which is
used for secret image sharing in 2007.Kurihara et al
[23],[22] proposed a (3, n) and a generalized (t, n) secret
sharing scheme based on simple XOR operations. Efficient
and ideal threshold scheme based on XOR is proposed by
Lv et al [24] in 2010. Secret sharing using number theoretic
schemes are also developed based on Chinese reminder
theorem [26],[25],[27].They are not widely used because of
the computational complexity. The proposed scheme makes
use of simple number theoretic concept and the Euclid’s
algorithm.

II. PROPOSED SECRET SHARING SCHEMES

The proposed system suggests a method of storing and
retrieving private data in a secure and effective manner. The
private data include personal information, sensitive
information or unique identification etc. The data storage
may be a private information storage using cloud database.
We propose number theoretic and XOR based scheme for
efficient implementation of secret sharing scheme. It can be
used for secure storage and retrieval. Since it does not
involve any encryption, the PKI needed for key
management can be avoided. Section 2.A contains the
detailed description of the secret sharing algorithm using
number theoretic concept. Section 2.B explains the XOR
based schemes. The algorithms mentioned below are
designed to share one byte of data at a time. The scheme
can be used to share both textual data and images.must be
indented. All paragraphs must be justified, i.e. both left-
justified and right-justified.

A. Schemes Based on Number Theory

 In this section the proposed secret sharing schemes which
are based on number theoretic concepts are explained in
detail. Two threshold secret sharing schemes of order (2, 3)
and (2,4) are proposed. The Algorithm 1 is the (2,3) secret
sharing phase and the retrieval algorithms depend on which
shares are used for the reconstruction and are given in
Algorithms 2,3,4.A (2,4) secret sharing scheme is
mentioned in Algorithm 5.The secret revealing algorithms
corresponds to different combination of shares are given in
Algorithms 6,7,8,10,11.The algorithms use simple number
theory concept. In order to find the inverse of a number
extended Euclid’s algorithm can be used. The share
generation can be done with a complexity of O(n) and the
secret revealing can also be done with a complexity of O(n),
where n is the number of bytes to share. Table lookup can
be used for faster performance.

ALGORITHM 1: (2,3) SECRET SHARING: NUMBER THEORY
Data: Input file S to share.
Result: Three Shares S1,S2,S3 of same size as the original file.
Choose a field Zp where p = 257.

while not at end of the input file do
s=read_byte(S) // read a byte or pixel
if s == 0 then

s = 256
end
ܽ	 ൌ 	 //find cube root of s						ሺ௣ିଵሻ/ଷݏ
r=random(257) // random number between 0-256
s1 = r * a mod p // s1 is the share1 pixel
if s1 == 256 then

s1 = 0
end
s2 = r2

* a mod p // s2 is the share2 pixel
if s2 == 256 then

s2 = 0
end
s3 = r4 * a mod p // s3 is the share3 pixel
if s3 == 256 then

s3 = 0
end
end

ALGORITHM 2: (2,3) SECRET REVEALING:NUMBER THEORY
S1S2

Data: Shares S1 and S2
Result: The original secret file S which is shared
Choose a field Zp where p = 257.
while not at end of the input files do
s1=read_byte(S1) // read a byte or pixel from S1
s2=read_byte(S2) // read a byte or pixel from S2
if s1 == 0 then

s1 = 256
end
if s2 == 0 then

s2 = 256
end
a = s12 *s2-1 mod p
s = a3 mod p; // s is the secret data byte or pixel
if s == 256 then

s = 0
end
end

ALGORITHM 3: (2,3) SECRET REVEALING:NUMBER THEORY
S1S3

Data: Shares S1 and S3
Result: The original secret file S which is shared
Choose a field Zp where p = 257.
while not at end of the input files do
s1=read_byte(S1) // read a byte or pixel from S1
s3=read_byte(S3) // read a byte or pixel from S2
if s1 == 0 then

s1 = 256
end
if s3 == 0 then

s3 = 256

Binu V P et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 404-409

www.ijcsit.com 405

end
s = s14 * s3-1 mod p // s is the secret data byte or
pixel
if s == 256 then

s = 0
end
end

ALGORITHM 4: (2,3) SECRET REVEALING:NUMBER THEORY
S2S3

Data: Shares S2 and S3
Result: The original secret file S which is shared
Choose a field Zp where p = 257.
while not at end of the input files do
s2=read_byte(S2) // read a byte or pixel from S1
s3=read_byte(S3) // read a byte or pixel from S2
if s2 == 0 then

s2 = 256
end
if s3 == 0 then

s3 = 256
end
a = s22 * s3-1 mod p
s = a3 mod p; // s is the secret data byte or pixel
if s == 256 then

s = 0
end
end

ALGORITHM 5: (2,4) SECRET SHARING:NUMBER THEORY

Data: Input file S to share.
Result: Four Shares S1,S2,S3,S4 of same size as the
original file.
Choose a field Zp where p = 257.
while not at end of the input file do
s=read_byte(S) // read a byte or pixel
if s == 0 then

s = 256
end
r=random(257) // random number between 0-256
s1 = r // s1 is the share1 pixel
if s1 == 256 then

s1 = 0
end
s2 = r * s mod p // s2 is the share2 pixel
if s2 == 256 then

s2 = 0
end
s3 = r2 * s mod p // s3 is the share3 pixel
if s3 == 256 then

s3 = 0
end
s4 = r3 * s mod p //s4 is the share4 pixel
if s4 == 256 then

s4 = 0
end
end

ALGORITHM 6: (2,4) SECRET REVEALING:NUMBER THEORY
S1S2

Data: Shares S1 and S2
Result: The original secret file S which is shared
Choose a field Zp where p = 257.
while not at end of the input files do
s1=read_byte(S1) // read a byte or pixel from S1
s2=read_byte(S2) // read a byte or pixel from S2
if s1 == 0 then

s1 = 256
end
if s2 == 0 then

s2 = 256
end
s = s1 * s2-1 mod p
if s == 256 then

s = 0
end
end

ALGORITHM 7: (2,4) SECRET REVEALING:NUMBER THEORY
S1S3

Data: Shares S1 and S3
Result: The original secret file S which is shared
Choose a field Zp where p = 257.
while not at end of the input files do
s1=read_byte(S1) // read a byte or pixel from S1
s3=read_byte(S3) // read a byte or pixel from S3
if s1 == 0 then

s1 = 256
end
if s3 == 0 then

s3 = 256
end
s = (s12)-1 * s3 mod p
if s == 256 then

s = 0
end
end

ALGORITHM 8: (2,4) SECRET REVEALING:NUMBER THEORY
S1S4

Data: Shares S1 and S4
Result: The original secret file S which is shared
Choose a field Zp where p = 257.
while not at end of the input files do
s1=read_byte(S1) // read a byte or pixel from S1
s4=read_byte(S4) // read a byte or pixel from S4
if s1 == 0 then

s1 = 256
end
if s4 == 0 then

s4 = 256
end
s = (s13)-1 * s4 mod p
if s == 256 then

s = 0
end
end

Binu V P et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 404-409

www.ijcsit.com 406

ALGORITHM 9: (2,3) SECRET REVEALING:NUMBER THEORY
S2S3

Data: Shares S2 and S3
Result: The original secret file S which is shared
Choose a field Zp where p = 257.
while not at end of the input files do
s2=read_byte(S2) // read a byte or pixel from S2
s3=read_byte(S3) // read a byte or pixel from S4
if s2 == 0 then
 s2 = 256
end
if s3 == 0 then
 s3 = 256
end
s = s22 * s3-1 mod p
if s == 256 then

s = 0
end
end

ALGORITHM 10: (2,4) SECRET REVEALING:NUMBER THEORY
S2S4

Data: Shares S2 and S4
Result: The original secret file S which is shared
Choose a field Zp where p = 257.
while not at end of the input files do
s2=read_byte(S2) // read a byte or pixel from S2
s4=read_byte(S4) // read a byte or pixel from S4
if s2 == 0 then
 s2 = 256
end
if s4 == 0 then
 s4 = 256
end
s = sqrt(s23 *s4-1 mod p)
if s == 256 then
 s = 0
end
end

ALGORITHM 11: (2,4) SECRET REVEALING:NUMBER THEORY
S3S4

Data: Shares S3 and S4
Result: The original secret file S which is shared
Choose a field Zp where p = 257.
while not at end of the input files do
s3=read_byte(S3) // read a byte or pixel from S2
s4=read_byte(S4) // read a byte or pixel from S4
if s3 == 0 then
 s3 = 256
end
if s4 == 0 then
 s4 = 256
end
s = s33* (s42)- 1 mod p
if s == 256 then
 s = 0
end
end

B. Schemes based on XOR

 An (n, n) scheme using XOR can easily be setup by
creating n-1 random shares of same size as the secret and
the nth share as the XOR of these n-1 shares and the secret
k. The secret can be revealed by simply XOR ing all the
shares. In this we propose two schemes. An ideal (2, 3)
scheme where the size of the share is same as that of the
secret is mentioned in Algorithm 16 and a non ideal scheme
which is also not perfect is mentioned in Algorithm 12. In
this the size of the share is reduced to half. The scheme can
be used when the storage become a constraint. The secret
sharing and revealing can be done in time O (n), where n is
the number of bytes to share. The secret reconstruction
corresponds to different combination of shares in the non
ideal scheme are mentioned in Algorithms 13,14,15 and in
the ideal schemes are mentioned in Algorithms 17,18,19.

ALGORITHM 12: (2,3) XOR SECRET SHARING-NON IDEAL

Data: Secret file S to share.
Result: Three shares S1,S2 and S3 of half the size of S.
while not at end of the input files do
s=read_byte(S) // read a byte or pixel from S
bs=binary(s) // bs is the binary representation of s
// odd bits of bs taken as share1 data nibble s1
s1=odd bits(bs)
// even bits of bs taken as share2 data nibble s2
s2=even bits(bs)
//share3 nibble is formed by xoring s1 and s2
s3 = s1  s2
end

ALGORITHM 13: (2,3) XOR SECRET REVEALING S1S2-NON IDEAL

Data: Share S1 and S2
Result: The original secret file S which is shared.
while not at end of the input files do
s1=read_byte(S1) // read a byte or pixel from S1
s2=read_byte(S2) // read a byte or pixel from S2
s = intermix(s1,s2) // intermix the bits of s1 and s2 to
 construct the secret byte
end

ALGORITHM 14: (2,3) XOR SECRET REVEALING S1S3-NON IDEAL

Data: Share S1 and S3
Result: The original secret file S which is shared.
while not at end of the input files do
s1=read_byte(S1) // read a byte or pixel from S1
s3=read_byte(S3) // read a byte or pixel from S3
s2 = s1  s3
// intermix the bits of s1 and s2 to construct the
secret byte
s = intermix(s1, s2) // intermix the bits of s1 and s2
to construct the secret byte
end

Binu V P et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 404-409

www.ijcsit.com 407

ALGORITHM 15: (2 ,3) XOR SECRET REVEALING S2S3-NON
IDEAL

Data: Share S2 and S3
Result: The original secret file S which is shared.
while not at end of the input files do
s2=read_byte(S2) // read a byte or pixel from S2
s3=read_byte(S3) // read a byte or pixel from S3
s1 = s2 s3
s = intermix(s1,s2) // intermix the bits of s1 and s2
to construct the secret byte
end

ALGORITHM 16: (2,3) XOR IDEAL SECRET SHARING

Data: Input file S to share.
Result: Three Shares SH1,SH2,SH3 of same size as the
original file.
while not at end of the input file do
s=read_byte(S) // read a byte or pixel
r=random(257) // random number between 0-256
s1,s2=split_two(s) // split s into 2 nibbles
r1, r2=split_two(r) // split r into 2 nibbles
s0 = 0000 // a dummy variable initialized to zero
sh1 = s0  r1||s2 r2 // sh1 is the share1 pixel and

 ’||’ is concatenation operation
 sh2 = s1  r1 ||s0  r2
//sh2 is the share2 pixel
 sh3 = s2  r1||s1  r2 //sh3 is the share3pixel
end

ALGORITHM 17: (2,3)XOR IDEAL SECRET RECOVERY SH1SH2

Data: Shares SH1 and SH2
Result: Original secret S that is shared
while not at end of the input files do
sh1=read_byte(SH1) // read a byte or pixel
sh2=read_byte(SH2)
x1, y1=split_two(sh1)
x2, y2=split_two(sh2)
s1 = x1  x2

s2 = y1  y2
s = s1||s2
end

ALGORITHM 18: XOR IDEAL SECRET RECOVERY SH1SH3

Data: Shares SH1 and SH3
Result: Original secret S that is shared
while not at end of the input files do
sh1=read_byte(SH1) // read a byte or pixel
sh3=read_byte(SH3)
x1,y1=split_ two(sh1)
x3,y3=split_two(sh3)
s2 = x1  x3

s1 = y1  y3 s2
s = s1||s2
end

ALGORITHM 19: (2, 3) XOR IDEAL SECRET RECOVERY SH2SH3

Data: Shares SH2 and SH3
Result: Original secret S that is shared
while not at end of the input files do
sh2=read_byte(SH2) // read a byte or pixel
sh3=read_byte(SH3)
x2,y2=split_two(sh2)
x3,y3=split_two(sh3)
s1 = y2  y3

s2 = x2  x3  s1
s = s1||s2
end

III. CONCLUSION
The confidentiality, availability and performance
requirement of storage system is addressed in this paper.
Secret sharing based solutions provides information
theoretic security and also provides trust and reliability. We
developed simple XOR and number theory based schemes
which reduce the computational complexities. The storage
requirement can also be reduced if we use scheme where
the share size is only half the size of the original secret. The
schemes mentioned in this paper are simple and easy to
implement when sharing data with third party servers. The
cost factor must also be considered. A (3, 2) or a (4, 2)
secret sharing scheme is the best choice. The cost factor can
also be reduced by using the non ideal XOR based scheme
where the share size is reduced to half but the information
theoretic security is compromised. A secret vector which
indicates the share number that each server stores can be
kept secret. A simple substitution or transposition cipher
can also be used for additional security as a pre-processing
step before sharing the file. The use of these schemes can
be further explored in other areas where the threshold
required is as specified in the algorithm. We have used
these schemes for efficient sharing of secret images also.

REFERENCES
[1] A. Shamir. ”How to share a secret”. Communications of the ACM,

22(11):612-613, 1979.
[2] G. R. Blakley et al.” Safeguarding cryptographic keys”. In

Proceedings of the national computer conference, volume 48, pages
313-317, 1979..

[3] Y. Desmedt and Y. Frankel. “Shared generation of authenticators
and signatures”.In Advances in CryptologyCRYPTO91, pages 457-
469. Springer,1992

[4] M. Naor and A. Wool. “Access control and signatures via quorum
secret sharing.” Parallel and Distributed Systems, IEEE
Transactions on,9(9):909-922, 1998.

[5] M. Ben-Or, S. Goldwasser, and A. Wigderson. “Completeness
theorems for non-cryptographic fault-tolerant distributed
computation,” In Proceedings of the twentieth annual ACM
symposium on Theory of computing, pages 1-10. ACM, 1988.

[6] D. Chaum, C. Crepeau, and I. Damgard. “Multiparty
unconditionally
secure protocols,” In Proceedings of the twentieth annual ACM
symposium on Theory of computing, pages 11-19. ACM, 1988.

[7] R. Cramer, I. Damgard, and U. Maurer. “General secure multi-party
computation from any linear secret-sharing scheme,” In Advances in
CryptologyEUROCRYPT 2000, pages 316-334. Springer, 2000.

[8] V. Goyal, O. Pandey, A. Sahai, and B. Waters.”Attribute-based
encryptionfor fine-grained access control of encrypted data,” In
Proceedings of the,13th ACM conference on Computer and
communications security, pages 89-98. ACM, 2006.

Binu V P et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 404-409

www.ijcsit.com 408

[9] J. Bethencourt, A. Sahai, and B. Waters.”Ciphertext-policy attribute
based encryption,” In Security and Privacy, 2007. SP’07. IEEE
Symposium on, pages 321-334. IEEE, 2007

[10] T. Tassa.” Generalized oblivious transfer by secret sharing”.
Designs,
Codes and Cryptography, 58(1):11-21, 2011

[11] B. Shankar, K. Srinathan, and C. P. Rangan. “Alternative protocols
for
generalized oblivious transfer,” In Distributed Computing and
Networking, pages 304-309. Springer, 2008

[12] M. Naor and A. Shamir. “Visual cryptography,” In Advances in
Cryptology EUROCRYPT 94,pages 1-12. Springer, 1995.

[13] Krawczyk, Hugo. ”Secret sharing made short.” Advances in
CryptologyCRYPTO93. Springer Berlin Heidelberg, 1994.

[14] Rabin, Michael O. ”Efficient dispersal of information for security,
load balancing, and fault tolerance.” Journal of the ACM (JACM)
36.2 (1989):335-348.

[15] Parakh, Abhishek, and Subhash Kak. ”Space efficient secret sharing
for implicit data security.” Information Sciences 181.2 (2011): 335-
341.

[16] Gnanaguruparan, Meenakshi, and Subhash Kak. ”Recursive hiding
of secrets in visual cryptography.” Cryptologia 26.1 (2002): 68-76.

[17] Parakh, Abhishek, and Subhash Kak. ”A tree based recursive
information hiding scheme.” Communications (ICC), 2010 IEEE
International Conference on. IEEE, 2010..

[18] Bguin, Philippe, and Antonella Cresti. ”General short computational
secret sharing schemes.” Advances in CryptologyEUROCRYPT95.
Springer Berlin Heidelberg, 1995.

[19] Rogaway, Phillip, and Mihir Bellare. ”Robust computational secret
sharing and a unified account of classical secret-sharing goals.”,

Proceedings of the 14th ACM conference on Computer and
communications security,ACM 2007.

[20] Vinod, V., et al. ”On the power of computational secret sharing.”
Progress in Cryptology-INDOCRYPT 2003. Springer Berlin
Heidelberg, 2003 162-176.

[21] Wang, Daoshun, et al. ”Two secret sharing schemes based on
Boolean operations.” Pattern Recognition 40.10 (2007): 2776-2785

[22] Kurihara, Jun, et al. ”A new (k, n)-threshold secret sharing scheme
and
its extension.” Information Security. Springer Berlin Heidelberg,
2008. 455-470.

[23] Kurihara, Jun, et al. "A Fast (3, n)-Threshold Secret Sharing
Scheme Using Exclusive-OR Operations." IEICE transactions on
fundamentals of electronics, communications and computer
sciences 91.1 (2008): 127-138.

[24] Lv, Chunli, et al. "Efficient Ideal Threshold Secret Sharing Schemes
Based on EXCLUSIVE-OR Operations." Network and System
Security (NSS), 2010 4th International Conference on. IEEE, 2010.

[25] M. Mignotte. “How to share a secret”. In Cryptography, pages 371-
375. Springer, 1983.

[26] C. Asmuth and J. Bloom. “A modular approach to key
safeguarding.” Information Theory, IEEE Transactions on,
29(2):208-210,1983.

[27] Iftene, Sorin. "General secret sharing based on the chinese
remainder theorem with applications in e-voting." Electronic Notes
in Theoretical Computer Science 186 (2007): 67-84.

Binu V P et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 404-409

www.ijcsit.com 409

